home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Popular Request
/
By Popular Request (Arsenal Computer)(SysOptics Distribution System).ISO
/
amiga2
/
gas-2_2.lha
/
gas-2.2
/
as.info-3
(
.txt
)
< prev
next >
Wrap
GNU Info File
|
1994-03-17
|
51KB
|
1,094 lines
This is Info file as.info, produced by Makeinfo-1.55 from the input
file ./as.texinfo.
START-INFO-DIR-ENTRY
* As:: The GNU assembler.
END-INFO-DIR-ENTRY
This file documents the GNU Assembler "as".
Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the section entitled "GNU General Public License" is included
exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice
identical to this one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that the section entitled "GNU General Public License"
may be included in a translation approved by the Free Software
Foundation instead of in the original English.
File: as.info, Node: AMD29K-Regs, Prev: AMD29K-Chars, Up: AMD29K Syntax
Register Names
..............
General-purpose registers are represented by predefined symbols of
the form `GRNNN' (for global registers) or `LRNNN' (for local
registers), where NNN represents a number between `0' and `127',
written with no leading zeros. The leading letters may be in either
upper or lower case; for example, `gr13' and `LR7' are both valid
register names.
You may also refer to general-purpose registers by specifying the
register number as the result of an expression (prefixed with `%%' to
flag the expression as a register number):
%%EXPRESSION
--where EXPRESSION must be an absolute expression evaluating to a
number between `0' and `255'. The range [0, 127] refers to global
registers, and the range [128, 255] to local registers.
In addition, `as' understands the following protected
special-purpose register names for the AMD 29K family:
vab chd pc0
ops chc pc1
cps rbp pc2
cfg tmc mmu
cha tmr lru
These unprotected special-purpose register names are also recognized:
ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop
File: as.info, Node: AMD29K Floating Point, Next: AMD29K Directives, Prev: AMD29K Syntax, Up: AMD29K-Dependent
Floating Point
--------------
The AMD 29K family uses IEEE floating-point numbers.
File: as.info, Node: AMD29K Directives, Next: AMD29K Opcodes, Prev: AMD29K Floating Point, Up: AMD29K-Dependent
AMD 29K Machine Directives
--------------------------
`.block SIZE , FILL'
This directive emits SIZE bytes, each of value FILL. Both SIZE
and FILL are absolute expressions. If the comma and FILL are
omitted, FILL is assumed to be zero.
In other versions of the GNU assembler, this directive is called
`.space'.
`.cputype'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
`.file'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
*Warning:* in other versions of the GNU assembler, `.file' is
used for the directive called `.app-file' in the AMD 29K
support.
`.line'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
`.sect'
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.
`.use SECTION NAME'
Establishes the section and subsection for the following code;
SECTION NAME may be one of `.text', `.data', `.data1', or `.lit'.
With one of the first three SECTION NAME options, `.use' is
equivalent to the machine directive SECTION NAME; the remaining
case, `.use .lit', is the same as `.data 200'.
File: as.info, Node: AMD29K Opcodes, Prev: AMD29K Directives, Up: AMD29K-Dependent
Opcodes
-------
`as' implements all the standard AMD 29K opcodes. No additional
pseudo-instructions are needed on this family.
For information on the 29K machine instruction set, see `Am29000
User's Manual', Advanced Micro Devices, Inc.
File: as.info, Node: H8/300-Dependent, Next: H8/500-Dependent, Prev: AMD29K-Dependent, Up: Machine Dependencies
H8/300 Dependent Features
=========================
* Menu:
* H8/300 Options:: Options
* H8/300 Syntax:: Syntax
* H8/300 Floating Point:: Floating Point
* H8/300 Directives:: H8/300 Machine Directives
* H8/300 Opcodes:: Opcodes
File: as.info, Node: H8/300 Options, Next: H8/300 Syntax, Up: H8/300-Dependent
Options
-------
`as' has no additional command-line options for the Hitachi H8/300
family.
File: as.info, Node: H8/300 Syntax, Next: H8/300 Floating Point, Prev: H8/300 Options, Up: H8/300-Dependent
Syntax
------
* Menu:
* H8/300-Chars:: Special Characters
* H8/300-Regs:: Register Names
* H8/300-Addressing:: Addressing Modes
File: as.info, Node: H8/300-Chars, Next: H8/300-Regs, Up: H8/300 Syntax
Special Characters
..................
`;' is the line comment character.
`$' can be used instead of a newline to separate statements.
Therefore *you may not use `$' in symbol names* on the H8/300.
File: as.info, Node: H8/300-Regs, Next: H8/300-Addressing, Prev: H8/300-Chars, Up: H8/300 Syntax
Register Names
..............
You can use predefined symbols of the form `rNh' and `rNl' to refer
to the H8/300 registers as sixteen 8-bit general-purpose registers. N
is a digit from `0' to `7'); for instance, both `r0h' and `r7l' are
valid register names.
You can also use the eight predefined symbols `rN' to refer to the
H8/300 registers as 16-bit registers (you must use this form for
addressing).
On the H8/300H, you can also use the eight predefined symbols `erN'
(`er0' ... `er7') to refer to the 32-bit general purpose registers.
The two control registers are called `pc' (program counter; a 16-bit
register, except on the H8/300H where it is 24 bits) and `ccr'
(condition code register; an 8-bit register). `r7' is used as the
stack pointer, and can also be called `sp'.
File: as.info, Node: H8/300-Addressing, Prev: H8/300-Regs, Up: H8/300 Syntax
Addressing Modes
................
as understands the following addressing modes for the H8/300:
Register direct
`@rN'
Register indirect
`@(D, rN)'
`@(D:16, rN)'
`@(D:24, rN)'
Register indirect: 16-bit or 24-bit displacement D from register
N. (24-bit displacements are only meaningful on the H8/300H.)
`@rN+'
Register indirect with post-increment
`@-rN'
Register indirect with pre-decrement
``@'AA'
``@'AA:8'
``@'AA:16'
``@'AA:24'
Absolute address `aa'. (The address size `:24' only makes sense
on the H8/300H.)
`#XX'
`#XX:8'
`#XX:16'
`#XX:32'
Immediate data XX. You may specify the `:8', `:16', or `:32' for
clarity, if you wish; but `as' neither requires this nor uses
it--the data size required is taken from context.
``@'`@'AA'
``@'`@'AA:8'
Memory indirect. You may specify the `:8' for clarity, if you
wish; but `as' neither requires this nor uses it.
File: as.info, Node: H8/300 Floating Point, Next: H8/300 Directives, Prev: H8/300 Syntax, Up: H8/300-Dependent
Floating Point
--------------
The H8/300 family has no hardware floating point, but the `.float'
directive generates IEEE floating-point numbers for compatibility with
other development tools.
File: as.info, Node: H8/300 Directives, Next: H8/300 Opcodes, Prev: H8/300 Floating Point, Up: H8/300-Dependent
H8/300 Machine Directives
-------------------------
`as' has only one machine-dependent directive for the H8/300:
`.h300h'
Recognize and emit additional instructions for the H8/300H
variant, and also make `.int' emit 32-bit numbers rather than the
usual (16-bit) for the H8/300 family.
On the H8/300 family (including the H8/300H) `.word' directives
generate 16-bit numbers.
File: as.info, Node: H8/300 Opcodes, Prev: H8/300 Directives, Up: H8/300-Dependent
Opcodes
-------
For detailed information on the H8/300 machine instruction set, see
`H8/300 Series Programming Manual' (Hitachi ADE-602-025). For
information specific to the H8/300H, see `H8/300H Series Programming
Manual' (Hitachi).
`as' implements all the standard H8/300 opcodes. No additional
pseudo-instructions are needed on this family.
The following table summarizes the H8/300 opcodes, and their
arguments. Entries marked `*' are opcodes used only on the H8/300H.
Legend:
Rs source register
Rd destination register
abs absolute address
imm immediate data
disp:N N-bit displacement from a register
pcrel:N N-bit displacement relative to program counter
add.b #imm,rd * andc #imm,ccr
add.b rs,rd band #imm,rd
add.w rs,rd band #imm,@rd
* add.w #imm,rd band #imm,@abs:8
* add.l rs,rd bra pcrel:8
* add.l #imm,rd * bra pcrel:16
adds #imm,rd bt pcrel:8
addx #imm,rd * bt pcrel:16
addx rs,rd brn pcrel:8
and.b #imm,rd * brn pcrel:16
and.b rs,rd bf pcrel:8
* and.w rs,rd * bf pcrel:16
* and.w #imm,rd bhi pcrel:8
* and.l #imm,rd * bhi pcrel:16
* and.l rs,rd bls pcrel:8
* bls pcrel:16 bld #imm,rd
bcc pcrel:8 bld #imm,@rd
* bcc pcrel:16 bld #imm,@abs:8
bhs pcrel:8 bnot #imm,rd
* bhs pcrel:16 bnot #imm,@rd
bcs pcrel:8 bnot #imm,@abs:8
* bcs pcrel:16 bnot rs,rd
blo pcrel:8 bnot rs,@rd
* blo pcrel:16 bnot rs,@abs:8
bne pcrel:8 bor #imm,rd
* bne pcrel:16 bor #imm,@rd
beq pcrel:8 bor #imm,@abs:8
* beq pcrel:16 bset #imm,rd
bvc pcrel:8 bset #imm,@rd
* bvc pcrel:16 bset #imm,@abs:8
bvs pcrel:8 bset rs,rd
* bvs pcrel:16 bset rs,@rd
bpl pcrel:8 bset rs,@abs:8
* bpl pcrel:16 bsr pcrel:8
bmi pcrel:8 bsr pcrel:16
* bmi pcrel:16 bst #imm,rd
bge pcrel:8 bst #imm,@rd
* bge pcrel:16 bst #imm,@abs:8
blt pcrel:8 btst #imm,rd
* blt pcrel:16 btst #imm,@rd
bgt pcrel:8 btst #imm,@abs:8
* bgt pcrel:16 btst rs,rd
ble pcrel:8 btst rs,@rd
* ble pcrel:16 btst rs,@abs:8
bclr #imm,rd bxor #imm,rd
bclr #imm,@rd bxor #imm,@rd
bclr #imm,@abs:8 bxor #imm,@abs:8
bclr rs,rd cmp.b #imm,rd
bclr rs,@rd cmp.b rs,rd
bclr rs,@abs:8 cmp.w rs,rd
biand #imm,rd cmp.w rs,rd
biand #imm,@rd * cmp.w #imm,rd
biand #imm,@abs:8 * cmp.l #imm,rd
bild #imm,rd * cmp.l rs,rd
bild #imm,@rd daa rs
bild #imm,@abs:8 das rs
bior #imm,rd dec.b rs
bior #imm,@rd * dec.w #imm,rd
bior #imm,@abs:8 * dec.l #imm,rd
bist #imm,rd divxu.b rs,rd
bist #imm,@rd * divxu.w rs,rd
bist #imm,@abs:8 * divxs.b rs,rd
bixor #imm,rd * divxs.w rs,rd
bixor #imm,@rd eepmov
bixor #imm,@abs:8 * eepmovw
* exts.w rd mov.w rs,@abs:16
* exts.l rd * mov.l #imm,rd
* extu.w rd * mov.l rs,rd
* extu.l rd * mov.l @rs,rd
inc rs * mov.l @(disp:16,rs),rd
* inc.w #imm,rd * mov.l @(disp:24,rs),rd
* inc.l #imm,rd * mov.l @rs+,rd
jmp @rs * mov.l @abs:16,rd
jmp abs * mov.l @abs:24,rd
jmp @@abs:8 * mov.l rs,@rd
jsr @rs * mov.l rs,@(disp:16,rd)
jsr abs * mov.l rs,@(disp:24,rd)
jsr @@abs:8 * mov.l rs,@-rd
ldc #imm,ccr * mov.l rs,@abs:16
ldc rs,ccr * mov.l rs,@abs:24
* ldc @abs:16,ccr movfpe @abs:16,rd
* ldc @abs:24,ccr movtpe rs,@abs:16
* ldc @(disp:16,rs),ccr mulxu.b rs,rd
* ldc @(disp:24,rs),ccr * mulxu.w rs,rd
* ldc @rs+,ccr * mulxs.b rs,rd
* ldc @rs,ccr * mulxs.w rs,rd
* mov.b @(disp:24,rs),rd neg.b rs
* mov.b rs,@(disp:24,rd) * neg.w rs
mov.b @abs:16,rd * neg.l rs
mov.b rs,rd nop
mov.b @abs:8,rd not.b rs
mov.b rs,@abs:8 * not.w rs
mov.b rs,rd * not.l rs
mov.b #imm,rd or.b #imm,rd
mov.b @rs,rd or.b rs,rd
mov.b @(disp:16,rs),rd * or.w #imm,rd
mov.b @rs+,rd * or.w rs,rd
mov.b @abs:8,rd * or.l #imm,rd
mov.b rs,@rd * or.l rs,rd
mov.b rs,@(disp:16,rd) orc #imm,ccr
mov.b rs,@-rd pop.w rs
mov.b rs,@abs:8 * pop.l rs
mov.w rs,@rd push.w rs
* mov.w @(disp:24,rs),rd * push.l rs
* mov.w rs,@(disp:24,rd) rotl.b rs
* mov.w @abs:24,rd * rotl.w rs
* mov.w rs,@abs:24 * rotl.l rs
mov.w rs,rd rotr.b rs
mov.w #imm,rd * rotr.w rs
mov.w @rs,rd * rotr.l rs
mov.w @(disp:16,rs),rd rotxl.b rs
mov.w @rs+,rd * rotxl.w rs
mov.w @abs:16,rd * rotxl.l rs
mov.w rs,@(disp:16,rd) rotxr.b rs
mov.w rs,@-rd * rotxr.w rs
* rotxr.l rs * stc ccr,@(disp:24,rd)
bpt * stc ccr,@-rd
rte * stc ccr,@abs:16
rts * stc ccr,@abs:24
shal.b rs sub.b rs,rd
* shal.w rs sub.w rs,rd
* shal.l rs * sub.w #imm,rd
shar.b rs * sub.l rs,rd
* shar.w rs * sub.l #imm,rd
* shar.l rs subs #imm,rd
shll.b rs subx #imm,rd
* shll.w rs subx rs,rd
* shll.l rs * trapa #imm
shlr.b rs xor #imm,rd
* shlr.w rs xor rs,rd
* shlr.l rs * xor.w #imm,rd
sleep * xor.w rs,rd
stc ccr,rd * xor.l #imm,rd
* stc ccr,@rs * xor.l rs,rd
* stc ccr,@(disp:16,rd) xorc #imm,ccr
Four H8/300 instructions (`add', `cmp', `mov', `sub') are defined
with variants using the suffixes `.b', `.w', and `.l' to specify the
size of a memory operand. `as' supports these suffixes, but does not
require them; since one of the operands is always a register, `as' can
deduce the correct size.
For example, since `r0' refers to a 16-bit register,
mov r0,@foo
is equivalent to
mov.w r0,@foo
If you use the size suffixes, `as' issues a warning when the suffix
and the register size do not match.
File: as.info, Node: H8/500-Dependent, Next: SH-Dependent, Prev: H8/300-Dependent, Up: Machine Dependencies
H8/500 Dependent Features
=========================
* Menu:
* H8/500 Options:: Options
* H8/500 Syntax:: Syntax
* H8/500 Floating Point:: Floating Point
* H8/500 Directives:: H8/500 Machine Directives
* H8/500 Opcodes:: Opcodes
File: as.info, Node: H8/500 Options, Next: H8/500 Syntax, Up: H8/500-Dependent
Options
-------
`as' has no additional command-line options for the Hitachi H8/500
family.
File: as.info, Node: H8/500 Syntax, Next: H8/500 Floating Point, Prev: H8/500 Options, Up: H8/500-Dependent
Syntax
------
* Menu:
* H8/500-Chars:: Special Characters
* H8/500-Regs:: Register Names
* H8/500-Addressing:: Addressing Modes
File: as.info, Node: H8/500-Chars, Next: H8/500-Regs, Up: H8/500 Syntax
Special Characters
..................
`!' is the line comment character.
`;' can be used instead of a newline to separate statements.
Since `$' has no special meaning, you may use it in symbol names.
File: as.info, Node: H8/500-Regs, Next: H8/500-Addressing, Prev: H8/500-Chars, Up: H8/500 Syntax
Register Names
..............
You can use the predefined symbols `r0', `r1', `r2', `r3', `r4',
`r5', `r6', and `r7' to refer to the H8/500 registers.
The H8/500 also has these control registers:
code pointer
data pointer
base pointer
stack top pointer
extra pointer
status register
`ccr'
condition code register
All registers are 16 bits long. To represent 32 bit numbers, use two
adjacent registers; for distant memory addresses, use one of the segment
pointers (`cp' for the program counter; `dp' for `r0'-`r3'; `ep' for
`r4' and `r5'; and `tp' for `r6' and `r7'.
File: as.info, Node: H8/500-Addressing, Prev: H8/500-Regs, Up: H8/500 Syntax
Addressing Modes
................
as understands the following addressing modes for the H8/500:
Register direct
`@RN'
Register indirect
`@(d:8, RN)'
Register indirect with 8 bit signed displacement
`@(d:16, RN)'
Register indirect with 16 bit signed displacement
`@-RN'
Register indirect with pre-decrement
`@RN+'
Register indirect with post-increment
`@AA:8'
8 bit absolute address
`@AA:16'
16 bit absolute address
`#XX:8'
8 bit immediate
`#XX:16'
16 bit immediate
File: as.info, Node: H8/500 Floating Point, Next: H8/500 Directives, Prev: H8/500 Syntax, Up: H8/500-Dependent
Floating Point
--------------
The H8/500 family uses IEEE floating-point numbers.
File: as.info, Node: H8/500 Directives, Next: H8/500 Opcodes, Prev: H8/500 Floating Point, Up: H8/500-Dependent
H8/500 Machine Directives
-------------------------
`as' has no machine-dependent directives for the H8/500. However,
on this platform the `.int' and `.word' directives generate 16-bit
numbers.
File: as.info, Node: H8/500 Opcodes, Prev: H8/500 Directives, Up: H8/500-Dependent
Opcodes
-------
For detailed information on the H8/500 machine instruction set, see
`H8/500 Series Programming Manual' (Hitachi M21T001).
`as' implements all the standard H8/500 opcodes. No additional
pseudo-instructions are needed on this family.
The following table summarizes H8/500 opcodes and their operands:
Legend:
abs8 8-bit absolute address
abs16 16-bit absolute address
abs24 24-bit absolute address
crb `ccr', `br', `ep', `dp', `tp', `dp'
disp8 8-bit displacement
ea `rn', `@rn', `@(d:8, rn)', `@(d:16, rn)',
`@-rn', `@rn+', `@aa:8', `@aa:16',
`#xx:8', `#xx:16'
ea_mem `@rn', `@(d:8, rn)', `@(d:16, rn)',
`@-rn', `@rn+', `@aa:8', `@aa:16'
ea_noimm `rn', `@rn', `@(d:8, rn)', `@(d:16, rn)',
`@-rn', `@rn+', `@aa:8', `@aa:16'
fp r6
imm4 4-bit immediate data
imm8 8-bit immediate data
imm16 16-bit immediate data
pcrel8 8-bit offset from program counter
pcrel16 16-bit offset from program counter
qim `-2', `-1', `1', `2'
rd any register
rs a register distinct from rd
rlist comma-separated list of registers in parentheses;
register ranges `rd-rs' are allowed
sp stack pointer (`r7')
sr status register
sz size; `.b' or `.w'. If omitted, default `.w'
ldc[.b] ea,crb bcc[.w] pcrel16
ldc[.w] ea,sr bcc[.b] pcrel8
add[:q] sz qim,ea_noimm bhs[.w] pcrel16
add[:g] sz ea,rd bhs[.b] pcrel8
adds sz ea,rd bcs[.w] pcrel16
addx sz ea,rd bcs[.b] pcrel8
and sz ea,rd blo[.w] pcrel16
andc[.b] imm8,crb blo[.b] pcrel8
andc[.w] imm16,sr bne[.w] pcrel16
bpt bne[.b] pcrel8
bra[.w] pcrel16 beq[.w] pcrel16
bra[.b] pcrel8 beq[.b] pcrel8
bt[.w] pcrel16 bvc[.w] pcrel16
bt[.b] pcrel8 bvc[.b] pcrel8
brn[.w] pcrel16 bvs[.w] pcrel16
brn[.b] pcrel8 bvs[.b] pcrel8
bf[.w] pcrel16 bpl[.w] pcrel16
bf[.b] pcrel8 bpl[.b] pcrel8
bhi[.w] pcrel16 bmi[.w] pcrel16
bhi[.b] pcrel8 bmi[.b] pcrel8
bls[.w] pcrel16 bge[.w] pcrel16
bls[.b] pcrel8 bge[.b] pcrel8
blt[.w] pcrel16 mov[:g][.b] imm8,ea_mem
blt[.b] pcrel8 mov[:g][.w] imm16,ea_mem
bgt[.w] pcrel16 movfpe[.b] ea,rd
bgt[.b] pcrel8 movtpe[.b] rs,ea_noimm
ble[.w] pcrel16 mulxu sz ea,rd
ble[.b] pcrel8 neg sz ea
bclr sz imm4,ea_noimm nop
bclr sz rs,ea_noimm not sz ea
bnot sz imm4,ea_noimm or sz ea,rd
bnot sz rs,ea_noimm orc[.b] imm8,crb
bset sz imm4,ea_noimm orc[.w] imm16,sr
bset sz rs,ea_noimm pjmp abs24
bsr[.b] pcrel8 pjmp @rd
bsr[.w] pcrel16 pjsr abs24
btst sz imm4,ea_noimm pjsr @rd
btst sz rs,ea_noimm prtd imm8
clr sz ea prtd imm16
cmp[:e][.b] imm8,rd prts
cmp[:i][.w] imm16,rd rotl sz ea
cmp[:g].b imm8,ea_noimm rotr sz ea
cmp[:g][.w] imm16,ea_noimm rotxl sz ea
Cmp[:g] sz ea,rd rotxr sz ea
dadd rs,rd rtd imm8
divxu sz ea,rd rtd imm16
dsub rs,rd rts
exts[.b] rd scb/f rs,pcrel8
extu[.b] rd scb/ne rs,pcrel8
jmp @rd scb/eq rs,pcrel8
jmp @(imm8,rd) shal sz ea
jmp @(imm16,rd) shar sz ea
jmp abs16 shll sz ea
jsr @rd shlr sz ea
jsr @(imm8,rd) sleep
jsr @(imm16,rd) stc[.b] crb,ea_noimm
jsr abs16 stc[.w] sr,ea_noimm
ldm @sp+,(rlist) stm (rlist),@-sp
link fp,imm8 sub sz ea,rd
link fp,imm16 subs sz ea,rd
mov[:e][.b] imm8,rd subx sz ea,rd
mov[:i][.w] imm16,rd swap[.b] rd
mov[:l][.w] abs8,rd tas[.b] ea
mov[:l].b abs8,rd trapa imm4
mov[:s][.w] rs,abs8 trap/vs
mov[:s].b rs,abs8 tst sz ea
mov[:f][.w] @(disp8,fp),rd unlk fp
mov[:f][.w] rs,@(disp8,fp) xch[.w] rs,rd
mov[:f].b @(disp8,fp),rd xor sz ea,rd
mov[:f].b rs,@(disp8,fp) xorc.b imm8,crb
mov[:g] sz rs,ea_mem xorc.w imm16,sr
mov[:g] sz ea,rd
File: as.info, Node: SH-Dependent, Next: i960-Dependent, Prev: H8/500-Dependent, Up: Machine Dependencies
Hitachi SH Dependent Features
=============================
* Menu:
* SH Options:: Options
* SH Syntax:: Syntax
* SH Floating Point:: Floating Point
* SH Directives:: SH Machine Directives
* SH Opcodes:: Opcodes
File: as.info, Node: SH Options, Next: SH Syntax, Up: SH-Dependent
Options
-------
`as' has no additional command-line options for the Hitachi SH
family.
File: as.info, Node: SH Syntax, Next: SH Floating Point, Prev: SH Options, Up: SH-Dependent
Syntax
------
* Menu:
* SH-Chars:: Special Characters
* SH-Regs:: Register Names
* SH-Addressing:: Addressing Modes
File: as.info, Node: SH-Chars, Next: SH-Regs, Up: SH Syntax
Special Characters
..................
`!' is the line comment character.
You can use `;' instead of a newline to separate statements.
Since `$' has no special meaning, you may use it in symbol names.
File: as.info, Node: SH-Regs, Next: SH-Addressing, Prev: SH-Chars, Up: SH Syntax
Register Names
..............
You can use the predefined symbols `r0', `r1', `r2', `r3', `r4',
`r5', `r6', `r7', `r8', `r9', `r10', `r11', `r12', `r13', `r14', and
`r15' to refer to the SH registers.
The SH also has these control registers:
procedure register (holds return address)
program counter
`mach'
`macl'
high and low multiply accumulator registers
status register
`gbr'
global base register
`vbr'
vector base register (for interrupt vectors)
File: as.info, Node: SH-Addressing, Prev: SH-Regs, Up: SH Syntax
Addressing Modes
................
`as' understands the following addressing modes for the SH. `RN' in
the following refers to any of the numbered registers, but *not* the
control registers.
Register direct
`@RN'
Register indirect
`@-RN'
Register indirect with pre-decrement
`@RN+'
Register indirect with post-increment
`@(DISP, RN)'
Register indirect with displacement
`@(R0, RN)'
Register indexed
`@(DISP, GBR)'
`GBR' offset
`@(R0, GBR)'
GBR indexed
`ADDR'
`@(DISP, PC)'
PC relative address (for branch or for addressing memory). The
`as' implementation allows you to use the simpler form ADDR
anywhere a PC relative address is called for; the alternate form
is supported for compatibility with other assemblers.
`#IMM'
Immediate data
File: as.info, Node: SH Floating Point, Next: SH Directives, Prev: SH Syntax, Up: SH-Dependent
Floating Point
--------------
The SH family uses IEEE floating-point numbers.
File: as.info, Node: SH Directives, Next: SH Opcodes, Prev: SH Floating Point, Up: SH-Dependent
SH Machine Directives
---------------------
`as' has no machine-dependent directives for the SH.
File: as.info, Node: SH Opcodes, Prev: SH Directives, Up: SH-Dependent
Opcodes
-------
For detailed information on the SH machine instruction set, see
`SH-Microcomputer User's Manual' (Hitachi Micro Systems, Inc.).
`as' implements all the standard SH opcodes. No additional
pseudo-instructions are needed on this family. Note, however, that
because `as' supports a simpler form of PC-relative addressing, you may
simply write (for example)
mov.l bar,r0
where other assemblers might require an explicit displacement to `bar'
from the program counter:
mov.l @(DISP, PC)
Here is a summary of SH opcodes:
Legend:
Rn a numbered register
Rm another numbered register
#imm immediate data
disp displacement
disp8 8-bit displacement
disp12 12-bit displacement
add #imm,Rn lds.l @Rn+,PR
add Rm,Rn mac.w @Rm+,@Rn+
addc Rm,Rn mov #imm,Rn
addv Rm,Rn mov Rm,Rn
and #imm,R0 mov.b Rm,@(R0,Rn)
and Rm,Rn mov.b Rm,@-Rn
and.b #imm,@(R0,GBR) mov.b Rm,@Rn
bf disp8 mov.b @(disp,Rm),R0
bra disp12 mov.b @(disp,GBR),R0
bsr disp12 mov.b @(R0,Rm),Rn
bt disp8 mov.b @Rm+,Rn
clrm mov.b @Rm,Rn
clrt mov.b R0,@(disp,Rm)
cmp/eq #imm,R0 mov.b R0,@(disp,GBR)
cmp/eq Rm,Rn mov.l Rm,@(disp,Rn)
cmp/ge Rm,Rn mov.l Rm,@(R0,Rn)
cmp/gt Rm,Rn mov.l Rm,@-Rn
cmp/hi Rm,Rn mov.l Rm,@Rn
cmp/hs Rm,Rn mov.l @(disp,Rn),Rm
cmp/pl Rn mov.l @(disp,GBR),R0
cmp/pz Rn mov.l @(disp,PC),Rn
cmp/str Rm,Rn mov.l @(R0,Rm),Rn
div0s Rm,Rn mov.l @Rm+,Rn
div0u mov.l @Rm,Rn
div1 Rm,Rn mov.l R0,@(disp,GBR)
exts.b Rm,Rn mov.w Rm,@(R0,Rn)
exts.w Rm,Rn mov.w Rm,@-Rn
extu.b Rm,Rn mov.w Rm,@Rn
extu.w Rm,Rn mov.w @(disp,Rm),R0
jmp @Rn mov.w @(disp,GBR),R0
jsr @Rn mov.w @(disp,PC),Rn
ldc Rn,GBR mov.w @(R0,Rm),Rn
ldc Rn,SR mov.w @Rm+,Rn
ldc Rn,VBR mov.w @Rm,Rn
ldc.l @Rn+,GBR mov.w R0,@(disp,Rm)
ldc.l @Rn+,SR mov.w R0,@(disp,GBR)
ldc.l @Rn+,VBR mova @(disp,PC),R0
lds Rn,MACH movt Rn
lds Rn,MACL muls Rm,Rn
lds Rn,PR mulu Rm,Rn
lds.l @Rn+,MACH neg Rm,Rn
lds.l @Rn+,MACL negc Rm,Rn
nop stc VBR,Rn
not Rm,Rn stc.l GBR,@-Rn
or #imm,R0 stc.l SR,@-Rn
or Rm,Rn stc.l VBR,@-Rn
or.b #imm,@(R0,GBR) sts MACH,Rn
rotcl Rn sts MACL,Rn
rotcr Rn sts PR,Rn
rotl Rn sts.l MACH,@-Rn
rotr Rn sts.l MACL,@-Rn
rte sts.l PR,@-Rn
rts sub Rm,Rn
sett subc Rm,Rn
shal Rn subv Rm,Rn
shar Rn swap.b Rm,Rn
shll Rn swap.w Rm,Rn
shll16 Rn tas.b @Rn
shll2 Rn trapa #imm
shll8 Rn tst #imm,R0
shlr Rn tst Rm,Rn
shlr16 Rn tst.b #imm,@(R0,GBR)
shlr2 Rn xor #imm,R0
shlr8 Rn xor Rm,Rn
sleep xor.b #imm,@(R0,GBR)
stc GBR,Rn xtrct Rm,Rn
stc SR,Rn
File: as.info, Node: i960-Dependent, Next: M68K-Dependent, Prev: SH-Dependent, Up: Machine Dependencies
Intel 80960 Dependent Features
==============================
* Menu:
* Options-i960:: i960 Command-line Options
* Floating Point-i960:: Floating Point
* Directives-i960:: i960 Machine Directives
* Opcodes for i960:: i960 Opcodes
File: as.info, Node: Options-i960, Next: Floating Point-i960, Up: i960-Dependent
i960 Command-line Options
-------------------------
`-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC'
Select the 80960 architecture. Instructions or features not
supported by the selected architecture cause fatal errors.
`-ACA' is equivalent to `-ACA_A'; `-AKC' is equivalent to `-AMC'.
Synonyms are provided for compatibility with other tools.
If none of these options is specified, `as' will generate code for
any instruction or feature that is supported by *some* version of
the 960 (even if this means mixing architectures!). In principle,
`as' will attempt to deduce the minimal sufficient processor type
if none is specified; depending on the object code format, the
processor type may be recorded in the object file. If it is
critical that the `as' output match a specific architecture,
specify that architecture explicitly.
Add code to collect information about conditional branches taken,
for later optimization using branch prediction bits. (The
conditional branch instructions have branch prediction bits in the
CA, CB, and CC architectures.) If BR represents a conditional
branch instruction, the following represents the code generated by
the assembler when `-b' is specified:
call INCREMENT ROUTINE
.word 0 # pre-counter
Label: BR
call INCREMENT ROUTINE
.word 0 # post-counter
The counter following a branch records the number of times that
branch was *not* taken; the differenc between the two counters is
the number of times the branch *was* taken.
A table of every such `Label' is also generated, so that the
external postprocessor `gbr960' (supplied by Intel) can locate all
the counters. This table is always labelled `__BRANCH_TABLE__';
this is a local symbol to permit collecting statistics for many
separate object files. The table is word aligned, and begins with
a two-word header. The first word, initialized to 0, is used in
maintaining linked lists of branch tables. The second word is a
count of the number of entries in the table, which follow
immediately: each is a word, pointing to one of the labels
illustrated above.
+------------+------------+------------+ ... +------------+
| | | | | |
| *NEXT | COUNT: N | *BRLAB 1 | | *BRLAB N |
| | | | | |
+------------+------------+------------+ ... +------------+
__BRANCH_TABLE__ layout
The first word of the header is used to locate multiple branch
tables, since each object file may contain one. Normally the links
are maintained with a call to an initialization routine, placed at
the beginning of each function in the file. The GNU C compiler
will generate these calls automatically when you give it a `-b'
option. For further details, see the documentation of `gbr960'.
`-norelax'
Normally, Compare-and-Branch instructions with targets that require
displacements greater than 13 bits (or that have external targets)
are replaced with the corresponding compare (or `chkbit') and
branch instructions. You can use the `-norelax' option to specify
that `as' should generate errors instead, if the target
displacement is larger than 13 bits.
This option does not affect the Compare-and-Jump instructions; the
code emitted for them is *always* adjusted when necessary
(depending on displacement size), regardless of whether you use
`-norelax'.
File: as.info, Node: Floating Point-i960, Next: Directives-i960, Prev: Options-i960, Up: i960-Dependent
Floating Point
--------------
`as' generates IEEE floating-point numbers for the directives
`.float', `.double', `.extended', and `.single'.
File: as.info, Node: Directives-i960, Next: Opcodes for i960, Prev: Floating Point-i960, Up: i960-Dependent
i960 Machine Directives
-----------------------
`.bss SYMBOL, LENGTH, ALIGN'
Reserve LENGTH bytes in the bss section for a local SYMBOL,
aligned to the power of two specified by ALIGN. LENGTH and ALIGN
must be positive absolute expressions. This directive differs
from `.lcomm' only in that it permits you to specify an alignment.
*Note `.lcomm': Lcomm.
`.extended FLONUMS'
`.extended' expects zero or more flonums, separated by commas; for
each flonum, `.extended' emits an IEEE extended-format (80-bit)
floating-point number.
`.leafproc CALL-LAB, BAL-LAB'
You can use the `.leafproc' directive in conjunction with the
optimized `callj' instruction to enable faster calls of leaf
procedures. If a procedure is known to call no other procedures,
you may define an entry point that skips procedure prolog code
(and that does not depend on system-supplied saved context), and
declare it as the BAL-LAB using `.leafproc'. If the procedure
also has an entry point that goes through the normal prolog, you
can specify that entry point as CALL-LAB.
A `.leafproc' declaration is meant for use in conjunction with the
optimized call instruction `callj'; the directive records the data
needed later to choose between converting the `callj' into a `bal'
or a `call'.
CALL-LAB is optional; if only one argument is present, or if the
two arguments are identical, the single argument is assumed to be
the `bal' entry point.
`.sysproc NAME, INDEX'
The `.sysproc' directive defines a name for a system procedure.
After you define it using `.sysproc', you can use NAME to refer to
the system procedure identified by INDEX when calling procedures
with the optimized call instruction `callj'.
Both arguments are required; INDEX must be between 0 and 31
(inclusive).
File: as.info, Node: Opcodes for i960, Prev: Directives-i960, Up: i960-Dependent
i960 Opcodes
------------
All Intel 960 machine instructions are supported; *note i960
Command-line Options: Options-i960. for a discussion of selecting the
instruction subset for a particular 960 architecture.
Some opcodes are processed beyond simply emitting a single
corresponding instruction: `callj', and Compare-and-Branch or
Compare-and-Jump instructions with target displacements larger than 13
bits.
* Menu:
* callj-i960:: `callj'
* Compare-and-branch-i960:: Compare-and-Branch
File: as.info, Node: callj-i960, Next: Compare-and-branch-i960, Up: Opcodes for i960
`callj'
.......
You can write `callj' to have the assembler or the linker determine
the most appropriate form of subroutine call: `call', `bal', or
`calls'. If the assembly source contains enough information--a
`.leafproc' or `.sysproc' directive defining the operand--then `as'
will translate the `callj'; if not, it will simply emit the `callj',
leaving it for the linker to resolve.
File: as.info, Node: Compare-and-branch-i960, Prev: callj-i960, Up: Opcodes for i960
Compare-and-Branch
..................
The 960 architectures provide combined Compare-and-Branch
instructions that permit you to store the branch target in the lower 13
bits of the instruction word itself. However, if you specify a branch
target far enough away that its address won't fit in 13 bits, the
assembler can either issue an error, or convert your Compare-and-Branch
instruction into separate instructions to do the compare and the branch.
Whether `as' gives an error or expands the instruction depends on
two choices you can make: whether you use the `-norelax' option, and
whether you use a "Compare and Branch" instruction or a "Compare and
Jump" instruction. The "Jump" instructions are *always* expanded if
necessary; the "Branch" instructions are expanded when necessary
*unless* you specify `-norelax'--in which case `as' gives an error
instead.
These are the Compare-and-Branch instructions, their "Jump" variants,
and the instruction pairs they may expand into:
Compare and
Branch Jump Expanded to
------ ------ ------------
bbc chkbit; bno
bbs chkbit; bo
cmpibe cmpije cmpi; be
cmpibg cmpijg cmpi; bg
cmpibge cmpijge cmpi; bge
cmpibl cmpijl cmpi; bl
cmpible cmpijle cmpi; ble
cmpibno cmpijno cmpi; bno
cmpibne cmpijne cmpi; bne
cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be
cmpobg cmpojg cmpo; bg
cmpobge cmpojge cmpo; bge
cmpobl cmpojl cmpo; bl
cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne
File: as.info, Node: M68K-Dependent, Next: Sparc-Dependent, Prev: i960-Dependent, Up: Machine Dependencies
M680x0 Dependent Features
=========================
* Menu:
* M68K-Opts:: M680x0 Options
* M68K-Syntax:: Syntax
* M68K-Moto-Syntax:: Motorola Syntax
* M68K-Float:: Floating Point
* M68K-Directives:: 680x0 Machine Directives
* M68K-opcodes:: Opcodes
File: as.info, Node: M68K-Opts, Next: M68K-Syntax, Up: M68K-Dependent
M680x0 Options
--------------
The Motorola 680x0 version of `as' has two machine dependent options.
One shortens undefined references from 32 to 16 bits, while the other
is used to tell `as' what kind of machine it is assembling for.
You can use the `-l' option to shorten the size of references to
undefined symbols. If the `-l' option is not given, references to
undefined symbols will be a full long (32 bits) wide. (Since `as'
cannot know where these symbols will end up, `as' can only allocate
space for the linker to fill in later. Since `as' doesn't know how far
away these symbols will be, it allocates as much space as it can.) If
this option is given, the references will only be one word wide (16
bits). This may be useful if you want the object file to be as small as
possible, and you know that the relevant symbols will be less than 17
bits away.
The 680x0 version of `as' is most frequently used to assemble
programs for the Motorola MC68020 microprocessor. Occasionally it is
used to assemble programs for the mostly similar, but slightly different
MC68000 or MC68010 microprocessors. You can give `as' the options
`-m68000', `-mc68000', `-m68010', `-mc68010', `-m68020', and `-mc68020'
to tell it what processor is the target.
File: as.info, Node: M68K-Syntax, Next: M68K-Moto-Syntax, Prev: M68K-Opts, Up: M68K-Dependent
Syntax
------
This syntax for the Motorola 680x0 was developed at MIT.
The 680x0 version of `as' uses syntax similar to the Sun assembler.
Intervening periods are now ignored; for example, `movl' is equivalent
to `move.l'.
In the following table "apc" stands for any of the address registers
(`a0' through `a7'), nothing, (`'), the Program Counter (`pc'), or the
zero-address relative to the program counter (`zpc').
The following addressing modes are understood:
"Immediate"
`#DIGITS'
"Data Register"
`d0' through `d7'
"Address Register"
`a0' through `a7'
"Address Register Indirect"
`a0@' through `a7@'
`a7' is also known as `sp', i.e. the Stack Pointer. `a6' is also
known as `fp', the Frame Pointer.
"Address Register Postincrement"
`a0@+' through `a7@+'
"Address Register Predecrement"
`a0@-' through `a7@-'
"Indirect Plus Offset"
`APC@(DIGITS)'
"Index"
`APC@(DIGITS,REGISTER:SIZE:SCALE)'
or `APC@(REGISTER:SIZE:SCALE)'
"Postindex"
`APC@(DIGITS)@(DIGITS,REGISTER:SIZE:SCALE)'
or `APC@(DIGITS)@(REGISTER:SIZE:SCALE)'
"Preindex"
`APC@(DIGITS,REGISTER:SIZE:SCALE)@(DIGITS)'
or `APC@(REGISTER:SIZE:SCALE)@(DIGITS)'
"Memory Indirect"
`APC@(DIGITS)@(DIGITS)'
"Absolute"
`SYMBOL', or `DIGITS'
For some configurations, especially those where the compiler normally
does not prepend an underscore to the names of user variables, the
assembler requires a `%' before any use of a register name. This is
intended to let the assembler distinguish between user variables and
registers named `a0' through `a7', et cetera. The `%' is always
accepted, but is only required for some configurations, notably
`m68k-coff'.
File: as.info, Node: M68K-Moto-Syntax, Next: M68K-Float, Prev: M68K-Syntax, Up: M68K-Dependent
Motorola Syntax
---------------
The standard Motorola syntax for this chip differs from the syntax
already discussed (*note Syntax: M68K-Syntax.). `as' can accept both
kinds of syntax, even within a single instruction. The syntaxes are
fully compatible, because the Motorola syntax never uses the `@'
character and the MIT syntax always does, except in cases where the
syntaxes are identical.
In particular, you may write or generate M68K assembler with the
following conventions:
(In the following table "apc" stands for any of the address
registers (`a0' through `a7'), nothing, (`'), the Program Counter
(`pc'), or the zero-address relative to the program counter (`zpc').)
The following additional addressing modes are understood:
"Address Register Indirect"
`a0' through `a7'
`a7' is also known as `sp', i.e. the Stack Pointer. `a6' is also
known as `fp', the Frame Pointer.
"Address Register Postincrement"
`(a0)+' through `(a7)+'
"Address Register Predecrement"
`-(a0)' through `-(a7)'
"Indirect Plus Offset"
`DIGITS(APC)'
"Index"
`DIGITS(APC,(REGISTER.SIZE*SCALE)'
or `(APC,REGISTER.SIZE*SCALE)'
In either case, SIZE and SCALE are optional (SCALE defaults to
`1', SIZE defaults to `l'). SCALE can be `1', `2', `4', or `8'.
SIZE can be `w' or `l'. SCALE is only supported on the 68020 and
greater.
File: as.info, Node: M68K-Float, Next: M68K-Directives, Prev: M68K-Moto-Syntax, Up: M68K-Dependent
Floating Point
--------------
The floating point code is not too well tested, and may have subtle
bugs in it.
Packed decimal (P) format floating literals are not supported. Feel
free to add the code!
The floating point formats generated by directives are these.
`.float'
`Single' precision floating point constants.
`.double'
`Double' precision floating point constants.
There is no directive to produce regions of memory holding extended
precision numbers, however they can be used as immediate operands to
floating-point instructions. Adding a directive to create extended
precision numbers would not be hard, but it has not yet seemed
necessary.
File: as.info, Node: M68K-Directives, Next: M68K-opcodes, Prev: M68K-Float, Up: M68K-Dependent
680x0 Machine Directives
------------------------
In order to be compatible with the Sun assembler the 680x0 assembler
understands the following directives.
`.data1'
This directive is identical to a `.data 1' directive.
`.data2'
This directive is identical to a `.data 2' directive.
`.even'
This directive is identical to a `.align 1' directive.
`.skip'
This directive is identical to a `.space' directive.
File: as.info, Node: M68K-opcodes, Prev: M68K-Directives, Up: M68K-Dependent
Opcodes
-------
* Menu:
* M68K-Branch:: Branch Improvement
* M68K-Chars:: Special Characters
File: as.info, Node: M68K-Branch, Next: M68K-Chars, Up: M68K-opcodes
Branch Improvement
..................
Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instruction that will reach the target.
Generally these mnemonics are made by substituting `j' for `b' at the
start of a Motorola mnemonic.
The following table summarizes the pseudo-operations. A `*' flags
cases that are more fully described after the table:
Displacement
+-------------------------------------------------
| 68020 68000/10
Pseudo-Op |BYTE WORD LONG LONG non-PC relative
+-------------------------------------------------
jbsr |bsrs bsr bsrl jsr jsr
jra |bras bra bral jmp jmp
* jXX |bXXs bXX bXXl bNXs;jmpl bNXs;jmp
* dbXX |dbXX dbXX dbXX; bra; jmpl
* fjXX |fbXXw fbXXw fbXXl fbNXw;jmp
XX: condition
NX: negative of condition XX
`*'--see full description below
`jbsr'
`jra'
These are the simplest jump pseudo-operations; they always map to
one particular machine instruction, depending on the displacement
to the branch target.
`jXX'
Here, `jXX' stands for an entire family of pseudo-operations,
where XX is a conditional branch or condition-code test. The full
list of pseudo-ops in this family is:
jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle
For the cases of non-PC relative displacements and long
displacements on the 68000 or 68010, `as' will issue a longer code
fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:
jXX foo
gives
bNXs oof
jmp foo
oof:
`dbXX'
The full family of pseudo-operations covered here is
dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt
Other than for word and byte displacements, when the source reads
`dbXX foo', `as' will emit
dbXX oo1
bra oo2
oo1:jmpl foo
oo2:
`fjXX'
This family includes
fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge fjngl fjngle fjngt
fjnle fjnlt fjoge fjogl fjogt fjole fjolt
fjor fjseq fjsf fjsne fjst fjueq fjuge
fjugt fjule fjult fjun
For branch targets that are not PC relative, `as' emits
fbNX oof
jmp foo
oof:
when it encounters `fjXX foo'.